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Introduction



The field of Compressive Sensing(CS)

A powerful method of exactly recovering signals at
 sub-Nyquist rate given that the signal has some sparse structure.
•

It is a wide field with overlaps in several distinct areas of 
science and technology:
       Signal Processing:
               (i) MRI imaging
              (ii) Speech processing
       Applied mathem

•

∗

∗ atics:
               (i) Applied harmonic analysis
               (ii) Random matrix theory
               (iii) Geometric functional analysis
       Statistics∗



 For a signal bandlimited to  Hz, The Nquist rate demands
 at least 2  samples per second for perfect reconstruction.
       Becomes pretty challenging for ADCs to deliver the high 
sampling rate in c

B
B

•

•
ontext of modern high bandwidth communi-

cation systems(e.g. radar).

Data Acquisition

 Can prior knowledge about sparse structure of the signal help
perfect reconstruction from a sub Nyquist sampling strategy?
•

−



Data Compression

 Many signals are sparse in transform domains,  like Fourier,
Wavelet etc.
•

 Can we use the sparse structure in the transform domains to
get compression even without the full acquisition (all signal
coordinates)?

•

( )

 Specifically,  instead of taking samples of the actual vector 
,  can we recover ,  from the linear measurements ,

where,  is known to be sparse in some domain,  that is there
is some known  matrix

N

∈•

=
x

x
x y Φx

 ,  such that  ,  such that  is
sparse.
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Sparsity in Wavelet domain



The problem of compressive sensing and its solutions



0The  "norm" optimization formulationl
 A suitable optimization problem must be formulated that 

addresses these questions by seeking out an unknown vector which
is  ,  i.e. with as few nonzero coordinates as possible.highly sparse

•

 Mathematically,  let the system of linear measurements be given
by  ,  where  and  is 
highly spa

, ,
r

 
se.

N M N M N×= <<

•

∈ ∈y x x Φ xΦ  
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 Then the optimization problem we seek to solve is solving a
constrained   "norm" minimizationl
•

: 0in |||m |=x y Φx x

 However,  this problem is a combinatorial one,  and the complex-
ity may be exponential. So,  do we quit ?
•



A relaxed convex optimization problem

0 1

: 1

 Turns out a slight convexification of the problem does the job,
i.e. instead of minimizing  "norm",  minimize the  norm
min ||| |
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 The following diagram gives intuitive explanation to why 
optimization finds a sparse solution,  while  optimization does not

l
l

•

 Solution of this problem can recover unknown  with high
probability,  if  is sparse,  and  satisfi
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The Restricted Isometry Property
 In order to recover a high dimensional sparse vector ,  from a

   low dimensional measurement vector ,  obtained as  ,
   the sensing matrix  must be “almost” orthonormal.Φ

•
=

x
y y xΦ

( ) This idea is captured by the   RIP :

      A matrix  is said to satisfy RIP of order ,  if  
         sparse vector ,  such that
                   

0 
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 In simple words,   is an approximate isometry for all sparse
  vectors.

K• −Φ
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 RIP is fundamentally related to eigenvalues of a matrix
          || |m |ax T
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 We can prove this as below
       Let  be a sparse vector so that ,  where 
          is the support of 
       Then,  by definition of maximum and minimum eigenvalues of a

          matrix,
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       Hence,  from the definition of RIP,  any ,  that satisfies the RIP
          of order ,  also sat
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       Since this is true for any set  of indices with cardinality ,  we
        can write,  for any such  satisfying the RIP property of order
        ,  || ||
       Since,  by

max T
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 Another nice property of RIP is that if RIC is small,  after
transformation,  orthogonal vectors remain  orthogonal,
as stated in the following form :
 ,                  |  || |||  ||S S
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How to find good sensing matrix ?
0

2

 A unique minimizer of the  minimization problem is
guaranteed if every 2  columns of the sensing matrix is linearly
independent,  equivalently, (0,1);  but how to find it ?K

l
K

δ

•

∈

2 How to design a sensing matrix such that (0,1)?Kδ• ∈



 An easy answer is  ,  i.e.,  matrices with
elements independent and identically distributed according to
some distribution

random matrices•

 Fantastic examples are :
        Gaussian sensing matrices,  i.e.,  elements are i.i.d. Gaussian
       Bernoulli sensing matrices with elements i.i.d. 0,1 with
           probabilities 1 ,  p p

•
•
•  

−



Recovery algorithms



1  minimization algorithmsl

( )

1min ||

s

 Basis pursuit :
                                    ||

                              

 Quadratically constrained basis pursuit or Basis pursuit denois-
ing BPDN :
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Greedy algorithms

( ) ( )
( )

Some of the most important greedy algorithms for sparse recovery
are :
         Matching pursuit MP ,  Orthogonal matching pursuit OMP ,

            Orthogonal least squares OLS

         Compressive samplin

•

• ( )
( )

( )
( )

g matching pursuit CoSaMP ,  Subspace

            Pursuit SP

         Iterative Hard Thresholding IHT ,  Hard Thresholding Pursuit

            HTP

•



Matching Pursuit

1

2

 Given that ,  the goal is to,  iteratively,  find the best
   linear representation of  in the dictionary {
         In other words,  find ,  iteratively,  such that ||  is
         

, , }
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 In matching pursuit
         Initialize the residual 
         Find the atom most correlated to the residual,  i.e.,  find 
            such that arg max ,  whe | | ,

         Updat
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e the residual : ,  and return to step 1i iρ φ← −r r



Orthogonal matching pursuit
 Same as matching pursuit,  except that the dictionary

   representation is known to be sparseK
•

−
 The Orthogonal matching pursuit goes as below :

        Initialize residual ,  and the temporary support  
        Find the atom most correlated to the residual ,  i.e.,  find 
           such t

iφ

•
• = Λ = ∅
•

r y
r

1hat | |,  where ,

        Enlarge the temporary support by augmenting this new index,
           i.e.  { }
        Find the best sparse representation of  with the atoms

arg m

  

ax

  

j N j ji

i
K
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•
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• −

j r

y

†
( )

       from the dictionary supported on ,  i.e. find ,  such that
                

       Update residual and return to step 1

,  
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 Many types of conditions have been found for the sensing
matrix ,  to ensure perfect recovery of the sparse vector

 from the measurement  vector in  iterations 
K

K

•
−

=x y x
Φ

Φ

[ ]

[ ]

1

1

 RIP based recovery conditions :

        Davenport and Wakin 1  found the condition 

       Wang et.al 2  improved the condition to 

        To date th
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e best condition is established 
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           which i  
2

s 4 1 1
K

K
K

δ +

+ −
<



Another type of recovery conditions are given by the 
 ,  and the average case coherence

           Worst case coherence is defined as the maximum absolute
              cross correl

worst case
coherence µ ν

−
−

•
− ation among the columns of the sensing matrix,  in

              other words | , |

           Average case coherence is defined as the maximum among all
              the abso

: ma

lute values o

x

f 

i j i jµ φ φ≠= 〉

•

〈

[ ]

:

row averages (excluding the diagonal in
              that row) of the Gram matrix ,  in other words,

              | , |

          Tropp. 4  gives recover

1:

y condition in terms of 
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N
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          Chi and Calderbank. 5  give cond
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[ ] Tropp and Gilbert. 6  have shown that OMP can indeed
recover a sparse vector with very high probability if an
"uncorrelated" (that is the mutual correlation between the
columns of the matrix is very l

K
•

−

ow with high probability)
sensing matrices are used :  specifically,  if (0,0.36),  and if
an "admissible" sensing matrix  is chosen with dimension

,  with ln( ),  for some constant ,  then,  OMP
can 
M N M C N C

δ

δ

∈

× ≥
Φ

recover the original,  sparse vector  from the
measurements  ,  with probability exceeding 1

K
δ

−
= −

x
y Φx





OMP with more than  iterationsK
 Recently a variant of OMP has been studied where OMP is

   run for more than  iterations,  where  is the sparsity of the
   unknown vector
 Allowing the algorithm to run for more iterations improve t

K K
•

•

31

he
   recovery condition 
          Recovery conditions found by Zhang :  OMP can recover a 

1             sparse vector with 30  iterations if 
3

          Recovery conditions found by Livshitz :  OMP

K

K

K δ

•

<

•
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 ,  if 

 reconstruc

, ( ~ 2·10 ,

ts a 

             sparse signals in for proper choices of

         ~ 0 )   1
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α β α β −
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[ ] Sahoo and Makur 7  has shown that if OMP is allowed to run

  for  iterations ( [0,1]),  the algorithm can recover
  a  sparse vector with high probability with 

ln  
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K K
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 
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+ ∈

 urements,  pretty close to the number of

  measurements required for success for Basis pursuit,  that is

ln nK
K
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 
 
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[ ]
( )

 Wang. et.al 8  proposed a generalized orthogonal matching

   pursuit algorithm gOMP  where at the augmentation step,
   instead of augmenting one index,  ( 1) indices are
   added,  which are chosen acco

N N

•

≥

[ ]1

rding to decreasing order of
   absolute correlation with the residual vector.
 Recovery conditions for this algorithm are given as
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Generalized orthogonal matching pursuit



[ ]Courtesy of Wang et.al. 8 .



Orthogonal least squares

 OLS has the same functional structure as OMP
 The key difference is in the identification step :

          Recall that OMP searches for a new index by finding the
             largest among the absolu

•
•

•

te correlations | , |
          OLS searches for an index such that inclusion of the
             corresponding column will minimize the projection error,  i.e.,
             find the index  such th

k

i

φ
•

〈 〉i r

2
{ }

at ||P ||  is minimized where  is

             searched over all indices in {1,2, , }

k kT i

kn T
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[ ]

[ ]

 There seems to be not much work on OLS in the literature.
 Soussen et.al 10  has numerically shown that OLS has

  uniformly higher recovery probability compared to OMP.
 Mukhopadhyay et.al 11  has trie

•

•

• d to characterize the recovery
  performance of OLS in terms of recovery probability and
  explained why OLS has higher recovery probability,  compared
  to OMP,  in correlated dictionaries.
         



Multiple Orthogonal least squares

[ ] MOLS is a generalization of OLS,  proposed by Wang et.al 12 .
 The generalization is realized in identification step,  where

   instead of choosing one new index,  a set of  indices ( 1)
   is chosen su

L L

•

•
≥

2
{ }

ch that the sum of projection errors by individually
   appending an atom from that set is minimized,  i.e.
  || P || is minimized.

 A recovery condition has been found by the
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[ ]Courtesy of Wang et.al. 8 .



( )Compressive sampling matching pursuit CoSaMP

0

_________________________________________________________
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[ ] Needell and Tropp. 13  proposed CoSaMP as a sparse signal
   recovery algorithm. They proved the following recovery
   condition :

 Let the measurement model be given by  where 
        

=

•

         + • y Φx e x

1
2 2

     is sparse and where  is the measurement noise vector.
             Then,  for each iteration 0,  the signal approximation 
             satisfies:
                       || . |0 5 |||k k
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 Foucart 14  later improved the recovery condition to
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 Satpathi and Chakraborty 15  showed that the number of
  iterations for the convergence of th
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( )Subspace Pursuit SP

0
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: Measurement vector ,  sensing matrix ,
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[ ] Dai and Milenkovic 16  proposed SP almost at the same time
   Needel and Tropp proposed CoSaMP.

 SP is quite similar to CoSaMP with the difference that SP has
             to compute two orth

•

          •
ogonal projections,  while CoSaMP

             requires to compute only one projection.
 Dai and Milenkovic showed that if   is a  sparse unknown

             vector and   is the measurem
K          •

= Φ
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y x

3

ent vector with the
             sensing matrix  satisfying 0.165,  then,  SP converges
             to the unknown vector  in a finite number of steps.
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[ ]Courtesy Dai and Milenkovic 16
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( )Iterated Hard Thresholding IHT
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 This algorithm is motivated by the constrained gradient
   descent approach :

 The IHT algorithm solves the following problem :
                          min |    | ||K≤
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 The problem is non convex in nature as the constraint set is
             non convex.

 However,  an heuristic approach is to use gradient descent to
             first solve the unconstrained 
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[ ]
 The “heuristic” approach of deriving IHT has been formalized

   by Blumensath and Gilbert 17 .
 Instead of directly solving the actual constrained optimization

             problem,  they atte

•

          •
mpt to solve another constrained

             optimization problem where the objective function is a
             majorization of the actual objective function,  with the
             constraint set uncha

2 2 2
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nged.
 Specifically,  they define the following functional :
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 Thus the prescription for the minimization follows the so called
             “Maximization Minimization” MM  approach,  formally,
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[ ] A very simple convergence proof has been given by Foucart 14
 Assume the measurement model  ,  with the unknown 

             having known sparsity 
 Then,  from the  updatth
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[ ]Foucart 18  proposed HTP motivated by the observation that
  the number of iterations taken by IHT to converge can be
  reduced by taking orthogonal projections of the updates on
  the set of  indices K

• 
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found at an iteration
 Foucart found the recovery condition for HTP for perfect

  measurements to be 

 Bouchot et.al 19  has found an upper bound on the number
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[ ]Courtesy of Foucart 18 .



Models of sparsity



Block sparsity

1 1 2 1

( 1) 1

These are sparse vectors where the non zero coefficients occur in clusters.
 Let a vector can be written as
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Group Sparsity
A generalization of block sparsity,  where the blocks may not

  be overlapping
 Consider a set of indices ,  and consider a

   class ,  called a group structure,  which is a coll
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ection of so
, 2, }

m
,
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( )Union of Subspace UoS  model and Model sparse signals

Another generalization of block sparse model that tries to
  capture the effect of overlapping blocks
 Let  be a sparse vector,  but with unknown support,

   i.e. the support of can be any of  t

N K• −∈
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x
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 Thus,  

 In general,  let ,  where  then

   defines the model sparse signal model and the
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